THE GROUPS OF ISOMETRIES OF SIMPLE IRREDUCIBLE PSEUDO-HERMITIAN SYMMETRIC SPACES

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coisotropic and polar actions on compact irreducible Hermitian symmetric spaces

We obtain the full classification of coisotropic and polar isometric actions of compact Lie groups on irreducible Hermitian symmetric spaces.

متن کامل

On Pseudo-hermitian Einstein Spaces

We describe and construct here pseudo-Hermitian structures θ without torsion (i.e. with transversal symmetry) whose Webster-Ricci curvature tensor is a constant multiple of the exterior differential dθ. We call these structures pseudo-Hermitian Einstein and our result states that they all can be derived locally from Kähler-Einstein metrics. Moreover, we discuss the corresponding Fefferman metri...

متن کامل

Projective Ranks of Compact Hermitian Symmetric Spaces

Let M be a compact irreducible Hermitian symmetric space and write M = G/K, with G the group of holomorphic isometries of M and K the stability group of the point of 0 ∈ M . We determine the maximal dimension of a complex projective space embedded in M as a totally geodesic submanifold. AMS Subject Classification: 14L35, 22F30, 20G05 Introduction Let M be a simply connected compact complex mani...

متن کامل

Classification of infinite-dimensional irreducible Hermitian-symmetric affine coadjoint orbits

In the finite-dimensional setting, every Hermitian-symmetric space of compact type is a coadjoint orbit of a finite-dimensional Lie group. It is natural to ask whether every infinite-dimensional Hermitiansymmetric space of compact type, which is a particular example of an Hilbert manifold, is transitively acted upon by a Hilbert Lie group of isometries. In this paper we give the classification ...

متن کامل

Homogeneous holomorphic hermitian principal bundles over hermitian symmetric spaces

We give a complete characterization of invariant integrable complex structures on principal bundles defined over hermitian symmetric spaces, using the Jordan algebraic approach for the curvature computations. In view of possible generalizations, the general setup of invariant holomorphic principal fibre bundles is described in a systematic way.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kyushu Journal of Mathematics

سال: 2018

ISSN: 1340-6116,1883-2032

DOI: 10.2206/kyushujm.72.25